Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aquabis(2,2'-bipyridine)(3-carboxylato-4-hydroxybenzenesulfonato)manganese(II) dihydrate

Sai-Rong Fan, ${ }^{\text {a }}$ Long-Guan Zhu, ${ }^{\text {a }}$, Hong-Ping Xiao ${ }^{\text {b }}$ and Seik Weng Ng ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310007, People's Republic of China, ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.048$
$w R$ factor $=0.125$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

The Mn atom in the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is coordinated by the two N heterocycles, a water molecule and a 3-carboxylato-4-hydroxybenzenesulfonate dianion through the carboxylate group, thus imposing an octahedral environment on the metal atom. The coordinated and uncoordinated water molecules, the carboxylate and sulfonate groups interact via hydrogen bonds, producing a three-dimensional network architecture.

Comment

A recent report (Gao et al., 2005) mentions the small number of structurally authenticated examples of metal derivatives of sulfosalicylic (3-carboxy-4-hydroxybenzenesulfonic) acid; included among these are some complexes with N -heterocycles (Icbudak et al., 2003; Li et al., 2004; Wang et al., 2004). Manganese 3-carboxy-4-hydroxybenzenesulfonate exists as a hexaaquamanganese salt (Ma et al., 2003). Two 2,2'-bipyridine ligands probably limit the coordination sites available for coordination by water, so that in the present manganese derivative, (I), the fifth site is occupied by a water molecule and the remaining site by the negatively charged carboxylate O atom of the dianion (Fig. 1).

The inability of the sulfonate group to participate in hydrogen bonding is reflected in some disorder, the $-\mathrm{SO}_{3}{ }^{-}$ fragment adopting two orientations around the $\mathrm{C}-\mathrm{S}$ axis. Nevertheless, the disordered fragment interacts with the uncoordinated water molecules through hydrogen bonds; the crystal structure appears to be tightly consolidated by extensive hydrogen bonds (Table 2).

Experimental

A mixture of manganese acetate tetrahydrate ($0.050 \mathrm{~g}, 0.20 \mathrm{mmol}$), 5sulfosalicylic acid dihydrate $(0.051 \mathrm{~g}, 0.20 \mathrm{mmol}), 2,2^{\prime}$-bipyridine ($0.031 \mathrm{~g}, 0.20 \mathrm{mmol}$) and water (10 ml) was sealed in a 20 ml Teflonlined stainless steel Parr bomb. The reactor was heated to 413 K for

Received 10 January 2005
Accepted 21 January 2005 Online 29 January 2005

24 h . The cooled colorless solution was set aside for a day to allow the solvent to evaporate. Pale yellow block-shaped crystals were obtained.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=637.52$
Triclinic, $P \overline{1}$
$a=9.8406$ (6) \AA
$b=10.1729$ (6) \AA
$c=15.2354$ (9) A
$\alpha=73.5009(13)^{\circ}$
$\beta=84.7304$ (14) ${ }^{\circ}$
$\gamma=80.7830(13)^{\circ}$
$V=1441.76$ (15) \AA^{3}

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.829, T_{\text {max }}=0.922$
12401 measured reflections

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.469 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 3913
reflections
$\theta=2.5-25.9^{\circ}$
$\mu=0.59 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, pale yellow
$0.33 \times 0.22 \times 0.14 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.125$
$S=1.03$
6350 reflections
435 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 50% probability level. The minor disorder component is not shown.

The aromatic H atoms were positioned geometrically and were included in the refinement in the riding-model approximation $[\mathrm{C}-\mathrm{H}$ $=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water and hydroxy H atoms were located in a difference Fourier map and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$. The sulfonate group is disordered; the structure was refined with the six $\mathrm{S}-\mathrm{O}$ distances restrained to be equal within $0.01 \AA$. The site occupancy factors for the disordered atoms O4, O5, O6 are 0.744 (8) and 0.256 (8).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 50073019) and the University of Malaya for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Gao, S., Zhu, Z.-B., Huo, L.-H. \& Ng, S. W. (2005). Acta Cryst. E61, m282m284.
Icbudak, H., Olmez, H., Yesilel, O. Z., Arslan, F., Naumov, P., Jovanovski, G., Ibrahim, A. R., Usman, A., Fun, H.-K., Chantrapromma, S. \& Ng, S. W. (2003). J. Mol. Struct. 657, 255-270.

Li, J.-F., Zhao, J.-Y., Li, X.-H. \& Hu, M.-L. (2004). Acta Cryst. E60, m1210m1212.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ma, J.-F., Yang, J. \& Liu, J.-F. (2003). Acta Cryst. E59, m478-m480.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, W.-G., Zhang, J., Song, L.-J. \& Ju, Z.-F. (2004). Inorg. Chem. Commun. 7, 858-880.

[^0]: (C) 2005 International Union of Crystallography

